Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Viruses ; 16(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543834

ABSTRACT

The African horse sickness virus (AHSV) belongs to the Genus Orbivirus, family Sedoreoviridae, and nine serotypes of the virus have been described to date. The AHSV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in decreasing size order (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable AHSV protein and the primary target for neutralizing antibodies. Consequently, Seg-2 determines the identity of the virus serotype. An African horse sickness (AHS) outbreak in an AHS-free status country requires identifying the serotype as soon as possible to implement a serotype-specific vaccination program. Considering that nowadays 'polyvalent live attenuated' is the only commercially available vaccination strategy to control the disease, field and vaccine strains of different serotypes could co-circulate. Additionally, in AHS-endemic countries, more than one serotype is often circulating at the same time. Therefore, a strategy to rapidly determine the virus serotype in an AHS-positive sample is strongly recommended in both epidemiological situations. The main objective of this study is to describe the development and validation of three triplex real-time RT-PCR (rRT-PCR) methods for rapid AHSV serotype detection. Samples from recent AHS outbreaks in Kenia (2015-2017), Thailand (2020), and Nigeria (2023), and from the AHS outbreak in Spain (1987-1990), were included in the study for the validation of these methods.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Orbivirus , Viral Vaccines , Animals , Horses , Reverse Transcriptase Polymerase Chain Reaction , African Horse Sickness/diagnosis , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Orbivirus/genetics , Antibodies, Neutralizing
2.
J Med Entomol ; 60(6): 1221-1229, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37862060

ABSTRACT

Orbiviruses are of significant importance to the health of wildlife and domestic animals worldwide; the major orbiviruses transmitted by multiple biting midge (Culicoides) species include bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus. The viruses, insect vectors, and hosts are anticipated to be impacted by global climate change, altering established Orbivirus epidemiology. Changes in global climate have the potential to alter the vector competence and extrinsic incubation period of certain biting midge species, affect local and long-distance dispersal dynamics, lead to range expansion in the geographic distribution of vector species, and increase transmission period duration (earlier spring onset and later fall transmission). If transmission intensity is associated with weather anomalies such as droughts and wind speeds, there may be changes in the number of outbreaks and periods between outbreaks for some regions. Warmer temperatures and changing climates may impact the viral genome by facilitating reassortment and through the emergence of novel viral mutations. As the climate changes, Orbivirus epidemiology will be inextricably altered as has been seen with recent outbreaks of bluetongue, epizootic hemorrhagic disease, and African horse sickness outside of endemic areas, and requires interdisciplinary teams and approaches to assess and mitigate future outbreak threats.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Ceratopogonidae , Horse Diseases , Orbivirus , Horses , Animals , African Horse Sickness/epidemiology , Climate Change
3.
PLoS Comput Biol ; 19(9): e1011448, 2023 09.
Article in English | MEDLINE | ID: mdl-37672554

ABSTRACT

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.


Subject(s)
African Horse Sickness , Animals , Horses , South Africa/epidemiology , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Disease Outbreaks/veterinary , Basic Reproduction Number , Computer Simulation
4.
Prev Vet Med ; 213: 105868, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739812

ABSTRACT

Dogs are the only non-equid species to develop the fatal form of African horse sickness (AHS). Research conducted in 2013 questioned the long-held belief that naturally occurring cases of AHS in dogs were contracted exclusively through the ingestion of contaminated horse meat. Culicoides midges, the vector of AHS virus (AHSV) for horses, have an aversion to dog blood meals and dogs were believed to be dead-end or incidental hosts. More recently, dog mortalities have occurred in the absence of horse meat consumption and vector transmission has been suspected. The current study is a retrospective serological survey of AHSV exposure in dogs from an endemic area. Dog sera collected from dogs (n = 366) living in the city of Tshwane, Gauteng Province, South Africa, were randomly selected from a biobank at a veterinary teaching hospital, corresponding to the years 2014-2019. The study used a laboratory in-house indirect recombinant VP7 antigen-based enzyme-linked immunosorbent assay (iELISA) with a test cut-off calculated from AHSV exposure-free dog sera (n = 32). Study AHSV seroprevalence was 6 % (22/366) with an estimated true prevalence of 4.1 % (95 % confidence interval (CI) = 1.3-8.1 %). Incidence was estimated for dogs with multiple serological results with seroconversion occurring at a rate of 2.3 seroconversions per 10 dog years at risk (95 % CI = 0.6-6.2). A subsection of the study sera was tested with AHSV viral neutralisation test (VN) (n = 42) for serotype determination. Antibodies to AHSV serotype 6 were most prevalent (90 %) in VN seropositive dogs (n = 20) with most dogs seemingly subclinically infected (>95 %). Seroprevalence descriptively varied by year and identified risk factors were annual rainfall > 754 mm (odds ratio (OR) = 5.76; 95 % CI = 2.22 - 14.95; p < 0.001), medium human population densities, 783-1663 people/km2 (OR = 7.14; 95 % CI = 1.39 - 36.73; p = 0.019) and 1664-2029 people/km2 (OR = 6.74; 95 % CI = 1.40 - 32.56; p = 0.018), and the month of March (OR = 5.12; 95 % CI = 1.41 - 18.61; p = 0.013). All identified risk factors were consistent with midge-borne transmission to dogs. The relatively high seroprevalence and seroconversion rates suggest frequent exposure of dogs to AHSV and indicates the need to investigate the role dogs might play in the overall epidemiology and transmission of AHSV.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Dog Diseases , Horse Diseases , Dogs , Humans , Animals , Horses , South Africa/epidemiology , Retrospective Studies , Hospitals, Animal , Seroepidemiologic Studies , Hospitals, Teaching , African Horse Sickness/epidemiology , Dog Diseases/epidemiology
5.
J Appl Anim Welf Sci ; 26(1): 52-67, 2023.
Article in English | MEDLINE | ID: mdl-33719797

ABSTRACT

Horses were provided full-time housing in unfamiliar vector-protected facilities during the African horse sickness (AHS) outbreak in Thailand. This study aimed to investigate the impact of this housing arrangement on the equine stress response. Nine healthy horses were housed in both a traditional barn and a vector-protected barn. Equine behavior and stress response data were collected in association with the housing environment and time of day. The mean behavioral score of horses housed in the vector-protected barn was lower at night than during the day. In addition, the horses' mean heart rate at night was lower than their heart rate during the day, irrespective of housing condition. Furthermore, although blood cortisol peaked at 6:00 AM and was lowest at 6:00 PM under both housing conditions, daily fluctuations in blood cortisol levels were correlated with changes in humidity and temperature in both environments. Finally, horses housed in the traditional barn exhibited earlier decreases in cortisol levels relative to the horses in the vector-protected barn. This result indicates that housing horses in vector-protected facilities may impose stress.


Subject(s)
African Horse Sickness , Horse Diseases , Animals , Horses , African Horse Sickness/epidemiology , Hydrocortisone , Housing , Heart Rate , Thailand/epidemiology , Disease Outbreaks/veterinary , Horse Diseases/epidemiology
6.
Bull Hist Med ; 96(3): 431-457, 2022.
Article in English | MEDLINE | ID: mdl-36571189

ABSTRACT

African horse sickness (AHS) plagued the Middle East in 1944 for the first time. It spread into Palestine during a transformative period, as the role of animals as global migrant-laborers was shifting; soon after, automated machines would relieve their burden and transform the relations between farmers, traders, the state and its policing powers, and the global market. By following the movement and management of this outbreak of the disease, along with medical knowledge and tools of prevention and treatment, the article demonstrates that animal health and mobility were substantial matters of concern in British Palestine. It shows, furthermore, that AHS became a catalyst in dismantling the economic, social, and cultural value of animals of burden and their handlers.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Transients and Migrants , Animals , Horses , Humans , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Disease Outbreaks , Farmers
7.
Virologie (Montrouge) ; 26(5): 375-386, 2022 09 01.
Article in French | MEDLINE | ID: mdl-36413122

ABSTRACT

African horse sickness (AHS) is a major arthropod-borne disease that causes significant losses in horses in sub-Saharan Africa. It is caused by the African horse sickness virus (AHSV), which is transmitted during a blood meal by Culicoides biting midges. The distribution of historical African culicoid vectors increases due to global warming. In addition, recent (Thailand, 2020) and earlier (Iberian Peninsula, 1965-66/1987-90) AHS outbreaks outside Africa demonstrate the adaptation of the virus to endogenous species in AHS-free regions, similar to what has been observed for bluetongue disease in recent decades. Therefore, many regions are considered at risk of introduction of AHS which could have important economic consequences for the equine industry. Overall, this prone the European Union to launch research programs to get better diagnostic and prophylactic tools.


La peste équine est une arbovirose majeure qui entraîne des pertes importantes chez les chevaux en Afrique subsaharienne. Elle est provoquée par le virus de la peste équine (African horse sickness virus, AHSV) dont la transmission s'effectue au cours d'un repas sanguin par des petits moucherons hématophages appartenant au genre Culicoides. En outre, les espèces vectrices historiques de culicoïdes présentes en Afrique voient leur aire de répartition s'étendre en lien avec le réchauffement climatique à l'échelle mondiale. Par ailleurs, des épisodes épizootiques récents (Thaïlande, 2020) ou un peu plus anciens (péninsule ibérique, 1965-66/1987-90) en dehors du continent africain soulignent la capacité d'adaptation du virus à des espèces vectrices autochtones, à l'instar de ce qui a été observé pour la fièvre catarrhale ovine ces dernières décennies. Ces facteurs laissent craindre à tout moment une introduction de la peste équine dans des régions indemnes. L'urgence est donc donnée actuellement par l'Union européenne pour se doter de meilleurs outils diagnostiques et prophylactiques afin de prévenir des conséquences économiques brutales pour l'industrie équine.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Bluetongue , Ceratopogonidae , Sheep , Animals , Horses , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Africa South of the Sahara
8.
Emerg Infect Dis ; 28(12): 2446-2454, 2022 12.
Article in English | MEDLINE | ID: mdl-36417933

ABSTRACT

African horse sickness (AHS) is a highly infectious and often fatal disease caused by 9 serotypes of the orbivirus African horse sickness virus (AHSV). In March 2020, an AHS outbreak was reported in Thailand in which AHSV serotype 1 was identified as the causative agent. Trivalent live attenuated vaccines serotype 1, 3, and 4 were used in a targeted vaccination campaign within a 50-km radius surrounding the infected cases, which promptly controlled the spread of the disease. However, AHS-like symptoms in vaccinated horses required laboratory diagnostic methods to differentiate infected horses from vaccinated horses, especially for postvaccination surveillance. We describe a real-time reverse transcription PCR-based assay for rapid characterization of the affecting field strain. The development and validation of this assay should imbue confidence in differentiating AHS-vaccinated horses from nonvaccinated horses. This method should be applied to determining the epidemiology of AHSV in future outbreaks.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Orbivirus , Animals , Horses , African Horse Sickness Virus/genetics , Serogroup , Real-Time Polymerase Chain Reaction , African Horse Sickness/diagnosis , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Vaccines, Attenuated
9.
J Equine Vet Sci ; 119: 104137, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223818

ABSTRACT

African horse sickness (AHS) is a viral disease of equids, caused by a virus of the genus Orbivirus, family Reoviridae. The African horse sickness virus (AHSV) genome is made up of ten double-stranded RNA (dsRNA) segments that together code for seven structural and four nonstructural proteins. AHS is endemic in sub-Saharan countries. The efficacy and safety of inactivated AHS vaccines containing all nine serotypes, produced at the Central Veterinary Research Laboratory (CVRL) in Dubai, United Arab Emirates have been proven in the past. All nine AHSV serotypes were isolated from 102 samples collected in the last 20 years from horse fatalities in seven different area of Kenya, Africa. CVRL inactivated AHS vaccines are used in a few African countries defining the importance of this present study to compare the genome sequences of the nine AHSV serotypes isolated from horse fatalities in Kenya and nine AHSV serotypes isolated in South Africa. The hypothesized serotypes of the newly sequenced AHSV field strains from Kenya were likewise confirmed in this investigation, and they show substantial sequence homologies with recently isolated AHSV field strains.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Orbivirus , Animals , Horses , African Horse Sickness/epidemiology , African Horse Sickness Virus/genetics , Orbivirus/genetics , Serogroup , South Africa/epidemiology , Horse Diseases/epidemiology
10.
Am J Vet Res ; 83(11): 1-11, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36215210

ABSTRACT

OBJECTIVE: African Horse Sickness (AHS) is a vector-borne disease endemic to sub-Saharan Africa caused by African Horse Sickness Virus (AHVS). Infections in naïve horses have high morbidity and mortality rates. AHS pathogenesis is not well understood; neither the hematologic changes nor acute phase response occurring during infection has been fully evaluated. The study's objective was to characterize the hematologic changes and acute phase response during experimental infection with AHSV. ANIMALS: 4 horses negative for AHSV group-specific antibodies. PROCEDURES: In this prospective, longitudinal study conducted between November 23 and December 2, 2020, horses were experimentally infected with AHSV, and blood samples were obtained before inoculation and then every 12 hours until euthanasia. Hematologic changes and changes for serum amyloid A (SAA) and iron concentration were evaluated over time using a general linear model including natural logarithm of sampling time. RESULTS: All horses were humanely euthanized due to severe clinical signs typical of AHS. Median Hct increased significantly, and the median WBC count, monocyte count, eosinophil count, and myeloperoxidase index changed significantly in all horses over time. Horses developed marked thrombocytopenia (median, 48 X 103 cells/µL; range, 21 X 103 to 58 X 103 cells/µL) while markers of platelet activation also changed significantly. Median SAA increased and serum iron concentration decreased significantly over time. CLINICAL RELEVANCE: Results indicated severe thrombocytopenia with platelet activation occurs during infection with AHSV. Changes in acute phase reactants SAA and iron, while significant, were unexpectedly mild and might not be useful clinical markers.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Thrombocytopenia , Animals , Horses , Acute-Phase Reaction/veterinary , Longitudinal Studies , Prospective Studies , African Horse Sickness/epidemiology , Thrombocytopenia/veterinary , Iron , Acute-Phase Proteins
11.
Sci Rep ; 12(1): 12904, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902616

ABSTRACT

Culicoides biting midges (Diptera: Ceratopogonidae) are the major vectors of bluetongue, Schmallenberg, and African horse sickness viruses. This study was conducted to survey Culicoides species in different parts of Ethiopia and to develop habitat suitability for the major Culicoides species in Ethiopia. Culicoides traps were set in different parts of the country from December 2018 to April 2021 using UV light Onderstepoort traps and the collected Culicoides were sorted to species level. To develop the species distribution model for the two predominant Culicoides species, namely Culicoides imicola and C. kingi, an ensemble modeling technique was used with the Biomod2 package of R software. KAPPA True skill statistics (TSS) and ROC curve were used to evaluate the accuracy of species distribution models. In the ensemble modeling, models which score TSS values greater than 0.8 were considered. Negative binomialregression models were used to evaluate the relationship between C. imicola and C. kingi catch and various environmental and climatic factors. During the study period, a total of 9148 Culicoides were collected from 66 trapping sites. Of the total 9148, 8576 of them belongs to seven species and the remaining 572 Culicoides were unidentified. The predominant species was C. imicola (52.8%), followed by C. kingi (23.6%). The abundance of these two species was highly influenced by the agro-ecological zone of the capture sites and the proximity of the capture sites to livestock farms. Climatic variables such as mean annual minimum and maximum temperature and mean annual rainfall were found to influence the catch of C. imicola at the different study sites. The ensemble model performed very well for both species with KAPPA (0.9), TSS (0.98), and ROC (0.999) for C. imicola and KAPPA (0.889), TSS (0.999), and ROC (0.999) for C. kingi. Culicoides imicola has a larger suitability range compared to C. kingi. The Great Rift Valley in Ethiopia, the southern and eastern parts of the country, and the areas along the Blue Nile and Lake Tana basins in northern Ethiopia were particularly suitable for C. imicola. High suitability for C. kingi was found in central Ethiopia and the Southern Nations, Nationalities and Peoples Region (SNNPR). The habitat suitability model developed here could help researchers better understand where the above vector-borne diseases are likely to occur and target surveillance to high-risk areas.


Subject(s)
African Horse Sickness , Bluetongue , Ceratopogonidae , African Horse Sickness/epidemiology , Animals , Bluetongue/epidemiology , Ethiopia , Horses , Insect Vectors , Sheep
12.
Epidemics ; 39: 100566, 2022 06.
Article in English | MEDLINE | ID: mdl-35576724

ABSTRACT

African horse sickness virus (AHSV) is a vector-borne virus spread by midges (Culicoides spp.). The virus causes African horse sickness (AHS) disease in some species of equid. AHS is endemic in parts of Africa, previously emerged in Europe and in 2020 caused outbreaks for the first time in parts of Eastern Asia. Here we analyse a unique historic dataset from the 1989-1991 emergence of AHS in Morocco in a naïve population of equids. Sequential Monte Carlo and Markov chain Monte Carlo techniques are used to estimate parameters for a spatial-temporal model using a transmission kernel. These parameters allow us to observe how the transmissibility of AHSV changes according to the distance between premises. We observe how the spatial specificity of the dataset giving the locations of premises on which any infected equids were reported affects parameter estimates. Estimations of transmissibility were similar at the scales of village (location to the nearest 1.3 km) and region (median area 99 km2), but not province (median area 3000 km2). This data-driven result could help inform decisions by policy makers on collecting data during future equine disease outbreaks, as well as policies for AHS control.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Ceratopogonidae , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Animals , Disease Outbreaks/veterinary , Horses , Morocco/epidemiology
13.
Sci Rep ; 12(1): 3910, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273211

ABSTRACT

African horse sickness (AHS) is a devastating equine infectious disease. On 17 March 2020, it first appeared in Thailand and threatened all the South-East Asia equine industry security. Therefore, it is imperative to carry out risk warnings of the AHS in China. The maximum entropy algorithm was used to model AHS and Culicoides separately by using climate and non-climate variables. The least cost path (LCP) method was used to analyze the habitat connectivity of Culicoides with the reclassified land cover and altitude as cost factors. The models showed the mean area under the curve as 0.918 and 0.964 for AHS and Culicoides. The prediction result map shows that there is a high risk area in the southern part of China while the habitats of the Culicoides are connected to each other. Therefore, the risk of introducing AHS into China is high and control of the border area should be strengthened immediately.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Ceratopogonidae , African Horse Sickness/epidemiology , Animals , China/epidemiology , Ecosystem , Horses , Insect Vectors , Risk Assessment
14.
Viruses ; 14(3)2022 02 28.
Article in English | MEDLINE | ID: mdl-35336912

ABSTRACT

Bluetongue virus (BTV) and African horse sickness virus (AHSV) cause economically important diseases that are currently exotic to the United Kingdom (UK), but have significant potential for introduction and onward transmission. Given the susceptibility of animals kept in zoo collections to vector-borne diseases, a qualitative risk assessment for the introduction of BTV and AHSV to ZSL London Zoo was performed. Risk pathways for each virus were identified and assessed using published literature, animal import data and outputs from epidemiological models. Direct imports of infected animals, as well as wind-borne infected Culicoides, were considered as routes of incursion. The proximity of ongoing disease events in mainland Europe and proven capability of transmission to the UK places ZSL London Zoo at higher risk of BTV release and exposure (estimated as low to medium) than AHSV (estimated as very low to low). The recent long-range expansion of AHSV into Thailand from southern Africa highlights the need for vector competence studies of Palearctic Culicoides for AHSV to assess the risk of transmission in this region.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Bluetongue virus , Bluetongue , Ceratopogonidae , African Horse Sickness/epidemiology , Animals , Bluetongue/epidemiology , Horses , Risk Assessment , Sheep , United Kingdom/epidemiology
15.
Sci Rep ; 12(1): 1748, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110661

ABSTRACT

African horse sickness is a vector-borne, non-contagious and highly infectious disease of equines caused by African horse sickness viruses (AHSv) that mainly affect horses. The occurrence of the disease causes huge economic impacts because of its high fatality rate, trade ban and disease control costs. In the planning of vectors and vector-borne diseases like AHS, the application of Ecological niche models (ENM) used an enormous contribution in precisely delineating the suitable habitats of the vector. We developed an ENM to delineate the global suitability of AHSv based on retrospective outbreak data records from 2005 to 2019. The model was developed in an R software program using the Biomod2 package with an Ensemble modeling technique. Predictive environmental variables like mean diurnal range, mean precipitation of driest month(mm), precipitation seasonality (cv), mean annual maximum temperature (oc), mean annual minimum temperature (oc), mean precipitation of warmest quarter(mm), mean precipitation of coldest quarter (mm), mean annual precipitation (mm), solar radiation (kj /day), elevation/altitude (m), wind speed (m/s) were used to develop the model. From these variables, solar radiation, mean maximum temperature, average annual precipitation, altitude and precipitation seasonality contributed 36.83%, 17.1%, 14.34%, 7.61%, and 6.4%, respectively. The model depicted the sub-Sahara African continent as the most suitable area for the virus. Mainly Senegal, Burkina Faso, Niger, Nigeria, Ethiopia, Sudan, Somalia, South Africa, Zimbabwe, Madagascar and Malawi are African countries identified as highly suitable countries for the virus. Besides, OIE-listed disease-free countries like India, Australia, Brazil, Paraguay and Bolivia have been found suitable for the virus. This model can be used as an epidemiological tool in planning control and surveillance of diseases nationally or internationally.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Ecosystem , Models, Statistical , Africa/epidemiology , African Horse Sickness/epidemiology , African Horse Sickness/transmission , Animals , Ceratopogonidae/virology , Disease Outbreaks/veterinary , Horses , India/epidemiology , Insect Vectors/virology , Software , South Africa/epidemiology , South America/epidemiology , Temperature , Vector Borne Diseases/epidemiology , Vector Borne Diseases/transmission , Vector Borne Diseases/veterinary
16.
Transbound Emerg Dis ; 69(4): e671-e681, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34921513

ABSTRACT

African horse sickness (AHS) is a vector-borne disease transmitted by Culicoides spp., endemic to sub-Saharan Africa. There have been many examples of historic and recent outbreaks in the Middle East, Asia and Europe. However, not much is known about infection dynamics and outbreak potential in these naive populations. In order to better inform a previously published ordinary differential equation model, we performed a systematic literature search to identify studies documenting experimental infection of naive (control) equids in vaccination trials. Data on the time until the onset of viraemia, clinical signs and death after experimental infection of a naive equid and duration of viraemia were extracted. The time to viraemia was 4.6 days and the time to clinical signs was 4.9 days, longer than the previously estimated latent period of 3.7 days. The infectious periods of animals that died/were euthanized or survived were found to be 3.9 and 8.7 days, whereas previous estimations were 4.4 and 6 days, respectively. The case fatality was also found to be higher than previous estimations. The updated parameter values (along with other more recently published estimates from literature) resulted in an increase in the number of host deaths, decrease in the duration of the outbreak and greater prevalence in vectors.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Ceratopogonidae , Horse Diseases , African Horse Sickness/epidemiology , Animals , Horses , Models, Theoretical , Viremia/veterinary
17.
Equine Vet J ; 54(2): 368-378, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33527473

ABSTRACT

BACKGROUND: African horse sickness (AHS) is endemic in sub-Saharan Africa posing a threat to equine populations in non-endemic regions. Available vaccine technologies have limitations, creating barriers to horse movement, AHS control and, in non-endemic areas or countries, rapid elimination of virus after incursion. The literature lacks an economic assessment of the benefits of bringing a new, more effective AHS vaccine to market. OBJECTIVES: The study assesses the economic impact of AHS and tests the hypothesis that investment in a safer, more effective AHS vaccine would give an economic return. STUDY DESIGN: Cost-benefit analysis. METHODS: Primary and secondary data were collected to populate the cost-benefit analysis model. A literature review was followed by a questionnaire survey and interviews to gather primary data. At-risk populations were defined and qualitative assessment completed to narrow the target populations for quantitative assessment. A deterministic cost-benefit model was developed in Excel and different scenarios tested. Break-even and sensitivity analysis were conducted on key parameters. RESULTS: The economic impact of AHS was estimated to be US$95 million per annum, and this was mainly in endemic regions with domestic equine industries and involved in international trade. Investment required to bring a new AHS vaccine to market was estimated to be up to US$3.5 million, which was very small relative to the benefits estimated in this study. The economic return on investment in bringing a new AHS vaccine to market was predicted to be positive and the analysis demonstrates this result was robust. MAIN LIMITATIONS: Data for the analysis were scarce, requiring expert opinion and extrapolation by the authors. Sensitivity analysis with the deterministic modelling structure indicated there was no justification for stochastic modelling, given the robustness of the return on investment. CONCLUSIONS: The analysis predicts a strong and robust economic return on the investment in bringing a new AHS vaccine to market. Main economic beneficiaries would be the high value horse sectors, specifically the equine industries in Republic of South Africa (RSA) and in non-endemic countries. In addition, major benefits would be captured in poor communities in sub-Saharan Africa where working equids are of high economic and social importance.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Vaccines , African Horse Sickness/epidemiology , African Horse Sickness/prevention & control , Animals , Commerce , Cost-Benefit Analysis , Horse Diseases/prevention & control , Horses , Internationality
18.
Emerg Infect Dis ; 27(8): 2208-2211, 2021 08.
Article in English | MEDLINE | ID: mdl-34287126

ABSTRACT

To investigate an outbreak of African horse sickness (AHS) on a horse farm in northeastern Thailand, we used whole-genome sequencing to detect and characterize the virus. The viruses belonged to serotype 1 and contained unique amino acids (95V,166S, 660I in virus capsid protein 2), suggesting a single virus introduction to Thailand.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , African Horse Sickness/epidemiology , African Horse Sickness Virus/genetics , Animals , Farms , Horses , Serogroup , Thailand/epidemiology
19.
Rev Sci Tech ; 40(1): 105-118, 2021 Jun.
Article in English, French, Spanish | MEDLINE | ID: mdl-34140737

ABSTRACT

The availability of rapid, highly sensitive and specific molecular and serologic diagnostic assays, such as competitive enzyme-linked immunosorbent assay (cELISA), has expedited the diagnosis of emerging transboundary animal diseases, including bluetongue (BT) and African horse sickness (AHS), and facilitated more thorough characterisation of their epidemiology. The development of assays based on real-time, reverse-transcription polymerase chain reaction (RT-PCR) to detect and identify the numerous serotypes of BT virus (BTV) and AHS virus (AHSV) has aided in-depth studies of the epidemiology of BTV infection in California and AHSV infection in South Africa. The subsequent evaluation of pan-serotype, real-time, RT-PCR-positive samples through the use of serotype-specific RT-PCR assays allows the rapid identification of virus serotypes, reducing the need for expensive and time-consuming conventional methods, such as virus isolation and serotype-specific virus neutralisation assays. These molecular assays and cELISA platforms provide tools that have enhanced epidemiologic surveillance strategies and improved our understanding of potentially altered Culicoides midge behaviour when infected with BTV. They have also supported the detection of subclinical AHSV infection of vaccinated horses in South Africa. Moreover, in conjunction with whole genome sequence analysis, these tests have clarified that the mechanism behind recent outbreaks of AHS in the AHS-controlled area of South Africa was the result of the reversion to virulence and/or genome reassortment of live attenuated vaccine viruses. This review focuses on the use of contemporary molecular diagnostic assays in the context of recent epidemiologic studies and explores their advantages over historic virus isolation and serologic techniques.


La disponibilité d'essais diagnostiques moléculaires et sérologiques rapides, hautement sensibles et spécifiques tels que l'épreuve immuno-enzymatique de compétition (ELISAc), a accéléré le diagnostic des maladies animales transfrontalières émergentes, dont la fièvre catarrhale ovine (FCO) et la peste équine, et contribué à dresser un tableau épidémiologique plus complet de ces maladies. Grâce à la mise au point d'essais basés sur l'amplification en chaîne par polymérase en temps réel couplée à une transcription inverse (RT­PCR) qui permettent de détecter et d'identifier les nombreux sérotypes du virus de la fièvre catarrhale du mouton et du virus de la peste équine, des études approfondies ont pu être conduites sur l'épidémiologie de l'infection par le virus de la fièvre catarrhale du mouton en Californie et de l'infection par le virus de la peste équine en Afrique du Sud. L'évaluation postérieure des échantillons positifs à une RT­PCR en temps réel de groupe (détectant le virus quel que soit le sérotype) au moyen de RT­PCR spécifiques de chaque sérotype permet d'identifier rapidement le sérotype causal et de limiter le recours à des méthodes classiques onéreuses et chronophages comme l'isolement viral ou les essais de neutralisation virale spécifiques de chaque sérotype. Les outils fournis par ces essais moléculaires et par les plateformes ELISAc ont renforcé les stratégies de surveillance épidémiologique et permis de mieux connaître les altérations potentielles de comportement chez les tiques Culicoides infectées par le virus de la fièvre catarrhale du mouton. Ils ont également contribué à détecter les cas d'infection asymptomatique par le virus de la peste équine chez des chevaux vaccinés en Afrique du Sud. En outre, associés avec l'analyse de séquences du génome entier, ces tests ont révélé que le mécanisme sous-jacent aux récents foyers de peste équine dans la zone de contrôle en Afrique du Sud correspondait à une réversion vers la virulence et/ou à un réassortiment du génome des souches de vaccin à virus vivant atténué. Les auteurs passent en revue l'utilisation des essais de diagnostic moléculaire de nouvelle génération dans le contexte de récentes études épidémiologiques et cherchent à établir leurs avantages par rapport aux techniques classiques d'isolement viral et de recherche sérologique.


La existencia de ensayos moleculares y serológicos de diagnóstico rápidos y de gran sensibilidad y especificidad, como el ensayo inmunoenzimático de competición (ELISAc), ha acelerado el diagnóstico de enfermedades animales transfronterizas emergentes, como la lengua azul o la peste equina, y facilitado una caracterización más exhaustiva de su epidemiología. La creación de ensayos basados en la reacción en cadena de la polimerasa acoplada a transcripción inversa (RT?PCR) en tiempo real para detectar y caracterizar los numerosos serotipos de los virus de la lengua azul y la peste equina ha ayudado a estudiar a fondo la epidemiología de sendos episodios infecciosos causados por el virus de la lengua azul en California y por el virus de la peste equina en Sudáfrica. El subsiguiente análisis de las muestras positivas a la prueba de RT?PC en tiempo real de cualquier serotipo con empleo de ensayos RT?PCR dirigidos específicamente contra uno u otro serotipo permite identificar rápidamente los serotipos víricos, lo que hace menos necesario el uso de métodos convencionales más caros y largos, como el aislamiento del virus o técnicas de neutralización vírica adaptadas específicamente a un serotipo. Estos dispositivos de ensayo molecular o de ELISAc ponen a nuestra disposición herramientas que potencian las estrategias de vigilancia epidemiológica y ayudan a conocer mejor las eventuales alteraciones del comportamiento de los jejenes Culicoides al ser infectados por el virus de la lengua azul. Estas técnicas han ayudado también a detectar en Sudáfrica casos de infección asintomática por el virus de la peste equina en caballos vacunados. Estas pruebas, además, empleadas en combinación con el análisis de secuencias genómicas completas, han servido para aclarar que el mecanismo subyacente a los recientes brotes de peste equina surgidos en la zona de Sudáfrica donde la enfermedad estaba bajo control fue fruto de la reversión a la virulencia y/o el reordenamiento genómico de virus vacunales atenuados. Los autores, centrándose en el uso de modernos ensayos moleculares de diagnóstico como parte de recientes estudios epidemiológicos, examinan las ventajas que ofrecen en comparación con las tradicionales técnicas serológicas y de aislamiento vírico.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Bluetongue virus , Horse Diseases , African Horse Sickness/diagnosis , African Horse Sickness/epidemiology , Animals , Animals, Wild , Horses , South Africa
20.
Rev Sci Tech ; 40(1): 91-104, 2021 Jun.
Article in English, French, Spanish | MEDLINE | ID: mdl-34140738

ABSTRACT

The availability of rapid, highly sensitive and specific molecular and serologic diagnostic assays, such as competitive enzyme-linked immunosorbent assay (cELISA), has expedited the diagnosis of emerging transboundary animal diseases, including bluetongue (BT) and African horse sickness (AHS), and facilitated more thorough characterisation of their epidemiology. The development of assays based on real-time, reverse-transcription polymerase chain reaction (RT-PCR) to detect and identify the numerous serotypes of BT virus (BTV) and AHS virus (AHSV) has aided in-depth studies of the epidemiology of BTV infection in California and AHSV infection in South Africa. The subsequent evaluation of pan-serotype, real-time, RT-PCR-positive samples through the use of serotype-specific RT-PCR assays allows the rapid identification of virus serotypes, reducing the need for expensive and time-consuming conventional methods, such as virus isolation and serotype-specific virus neutralisation assays. These molecular assays and cELISA platforms provide tools that have enhanced epidemiologic surveillance strategies and improved our understanding of potentially altered Culicoides midge behaviour when infected with BTV. They have also supported the detection of subclinical AHSV infection of vaccinated horses in South Africa. Moreover, in conjunction with whole genome sequence analysis, these tests have clarified that the mechanism behind recent outbreaks of AHS in the AHS-controlled area of South Africa was the result of the reversion to virulence and/or genome reassortment of live attenuated vaccine viruses. This review focuses on the use of contemporary molecular diagnostic assays in the context of recent epidemiologic studies and explores their advantages over historic virus isolation and serologic techniques.


La disponibilité d'essais diagnostiques moléculaires et sérologiques rapides, hautement sensibles et spécifiques tels que l'épreuve immuno-enzymatique de compétition (ELISAc), a accéléré le diagnostic des maladies animales transfrontalières émergentes, dont la fièvre catarrhale ovine (FCO) et la peste équine, et contribué à dresser un tableau épidémiologique plus complet de ces maladies. Grâce à la mise au point d'essais basés sur l'amplification en chaîne par polymérase en temps réel couplée à une transcription inverse (RT­PCR) qui permettent de détecter et d'identifier les nombreux sérotypes du virus de la fièvre catarrhale du mouton et du virus de la peste équine, des études approfondies ont pu être conduites sur l'épidémiologie de l'infection par le virus de la fièvre catarrhale du mouton en Californie et de l'infection par le virus de la peste équine en Afrique du Sud. L'évaluation postérieure des échantillons positifs à une RT­PCR en temps réel de groupe (détectant le virus quel que soit le sérotype) au moyen de RT­PCR spécifiques de chaque sérotype permet d'identifier rapidement le sérotype causal et de limiter le recours à des méthodes classiques onéreuses et chronophages comme l'isolement viral ou les essais de neutralisation virale spécifiques de chaque sérotype. Les outils fournis par ces essais moléculaires et par les plateformes ELISAc ont renforcé les stratégies de surveillance épidémiologique et permis de mieux connaître les altérations potentielles de comportement chez les tiques Culicoides infectées par le virus de la fièvre catarrhale du mouton. Ils ont également contribué à détecter les cas d'infection asymptomatique par le virus de la peste équine chez des chevaux vaccinés en Afrique du Sud. En outre, associés avec l'analyse de séquences du génome entier, ces tests ont révélé que le mécanisme sous-jacent aux récents foyers de peste équine dans la zone de contrôle en Afrique du Sud correspondait à une réversion vers la virulence et/ou à un réassortiment du génome des souches de vaccin à virus vivant atténué. Les auteurs passent en revue l'utilisation des essais de diagnostic moléculaire de nouvelle génération dans le contexte de récentes études épidémiologiques et cherchent à établir leurs avantages par rapport aux techniques classiques d'isolement viral et de recherche sérologique.


La existencia de ensayos moleculares y serológicos de diagnóstico rápidos y de gran sensibilidad y especificidad, como el ensayo inmunoenzimático de competición (ELISAc), ha acelerado el diagnóstico de enfermedades animales transfronterizas emergentes, como la lengua azul o la peste equina, y facilitado una caracterización más exhaustiva de su epidemiología. La creación de ensayos basados en la reacción en cadena de la polimerasa acoplada a transcripción inversa (RT?PCR) en tiempo real para detectar y caracterizar los numerosos serotipos de los virus de la lengua azul y la peste equina ha ayudado a estudiar a fondo la epidemiología de sendos episodios infecciosos causados por el virus de la lengua azul en California y por el virus de la peste equina en Sudáfrica. El subsiguiente análisis de las muestras positivas a la prueba de RT?PC en tiempo real de cualquier serotipo con empleo de ensayos RT?PCR dirigidos específicamente contra uno u otro serotipo permite identificar rápidamente los serotipos víricos, lo que hace menos necesario el uso de métodos convencionales más caros y largos, como el aislamiento del virus o técnicas de neutralización vírica adaptadas específicamente a un serotipo. Estos dispositivos de ensayo molecular o de ELISAc ponen a nuestra disposición herramientas que potencian las estrategias de vigilancia epidemiológica y ayudan a conocer mejor las eventuales alteraciones del comportamiento de los jejenes Culicoides al ser infectados por el virus de la lengua azul. Estas técnicas han ayudado también a detectar en Sudáfrica casos de infección asintomática por el virus de la peste equina en caballos vacunados. Estas pruebas, además, empleadas en combinación con el análisis de secuencias genómicas completas, han servido para aclarar que el mecanismo subyacente a los recientes brotes de peste equina surgidos en la zona de Sudáfrica donde la enfermedad estaba bajo control fue fruto de la reversión a la virulencia y/o el reordenamiento genómico de virus vacunales atenuados. Los autores, centrándose en el uso de modernos ensayos moleculares de diagnóstico como parte de recientes estudios epidemiológicos, examinan las ventajas que ofrecen en comparación con las tradicionales técnicas serológicas y de aislamiento vírico.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Bluetongue virus , Bluetongue , Horse Diseases , Sheep Diseases , African Horse Sickness/diagnosis , African Horse Sickness/epidemiology , African Horse Sickness Virus/genetics , Animals , Bluetongue/diagnosis , Bluetongue/epidemiology , Bluetongue virus/genetics , Horses , Sheep , South Africa/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...